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The evolution in the plasma of a magnetic field that is fast-rising at the plasma boundary, and
the simultaneous pushing of the plasma by that magnetic field, are studied for the case that a
parallel magnetic field is present in the plasma. It is shown that initially the magnetic field
propagates into the plasma in the form of a whistler wave. The magnetic field evolution is then
governed by the Schrodinger equation for a free particle, as described in the previous simplified
analysis [Phys. Fluids B 3, 1546 (1991) ]. Later, the gas-dynamics shock propagation exceeds
the magnetic field propagation. If the magnetic field in the plasma is initially oblique and not
parallel, a quasiperpendicular fast (super-Alfvénic) shock propagates in the plasma, following

a whistler precursor. The width of the current channel is on the scale of the ion skin depth.

. INTRODUCTION

Plasma pushing by a magnetic pressure is a dominant
process in magnetically driven shock waves,! Z pinches,?
theta pinches,? plasma opening switches,* magnetically in-
sulated ion diodes,® and other plasma devices. In a common
configuration, the magnetic field is parallel to the plasma-—
vacuum boundary outside the plasma, while inside the plas-
ma its magnitude drops to zero across a narrow current lay-
er. The width of the current layer could have an important
effect on the plasma dynamics. In a collisional plasma this
width is usually determined by the plasma resistivity. The
presence of a uniform magnetic field normal to the plasma
boundary and parallel to the direction of magnetic field
propagation significantly increases the width of the current
channel. In a collisionless plasma the characteristic width of
the current channel becomes the ion skin depth rather than
the electron skin depth.

At the early stage, the magnetic field propagation into
the plasma, in the course of formation of the current channel
and the pushing of the plasma by the magnetic pressure,
occur simultaneously. We have recently studied such a cur-
rent channel formation along a parallel magnetic field, when
a fast-rising magnetic field is applied at the plasma bound-
ary.® We were interested in the time before the plasma is
compressed and a shock is formed. By assuming that the
process was so fast that the plasma ions were immobile we
have shown that the magnetic field propagates into the plas-
ma in the form of a dispersive whistler wave. In the present
paper we study the current channel formation along a paral-
lel magnetic field without neglecting the plasma motion. For
a fast-rising magnetic field we show that initially the magnet-
ic field does indeed propagate as a whistler wave and its
evolution is well described by the Schrédinger equation for a
free particle, in agreement with our earlier simplified analy-
sis.® The plasma pushing is shown to become dominant only
later. The purpose of this paper, therefore, is to describe the
transition from a dominant magnetic field propagation as a
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whistler wave, which we have previously studied,® to a domi-
nant plasma pushing in the form of a shock, as is known in
shock physics. In short-duration plasmas, when the charac-
teristic time is shorter than the ion-cyclotron period, this
transition time cquld be comparable to the duration time of
the whole process.

We employ the one-dimensional (1-D) ideal magneto-
hydrodynamics (MHD) model, modified by the inclusion of
the Hall term in Ohm’s law and artificial viscosity at the
shock front. The inclusion of the Hall term extends the valid-
ity of the MHD model to times shorter than the ion-cyclo-
tron period. Because of its dispersive nature, the Hall term is
dominant when the fast-rising magnetic field is applied. It is
the Hall field that enables the magnetic field to propagate in
the form of a whistler wave. The magnetic field is frozen into
the electron fluid in our model of zero resistivity.

As the current channel broadens, the velocity of this
broadening decreases. The magnetic pressure acts as a piston
and generates a gas-dynamic shock in the plasma. The prop-
agation of the shock and the accompanying plasma motion
gradually become the dominant processes.

The present analysis describes the transient process of
magnetic field propagation and plasma pushing along a
background parallel magnetic field in an idealized one-di-
mensional semi-infinite plasma. The time scale, the ion-cy-
clotron period, is characteristic of several pulsed-power
plasma devices. The understanding of the mechanism of cur-
rent channel broadening could be of practical importance.
However, the effect of the inclusion of a parallel magnetic
field in any such device could only be appreciated through a
more-detailed analysis that includes two-dimensional (2-D)
effects as well as finite dimensions of the particular system,
sheaths at boundaries, etc.

In Sec. II we write the governing equations. In Sec. III
we present numerical examples that demonstrate the early
field propagation and the developing gas-dynamic shock. In
Sec. IV we show the fast shock propagating in an initially
magnetized plasma and the whistler precursor in its front.
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ii. THE GOVERNING EQUA
We consider a plasma that is initially of a uniform den-
sity po and that is propagated by a magnetic field of a charac-

teristic magunitude B,. The 1-D MHD equations, with the

it i ;Ao e
addition of the Hall term, are the continuity equation
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The Hall term is the last term on the right-hand side of Eq.
(1e). We have used normalized quantities, where p is the
density divided by p,, b is the magnetic field divided by B, x
is the coordinate divided by x, = (c*M */4mp,e*)'/? (e and
M are the ion charge and mass and ¢ is the velocity of light in
vacuum), and ¢ is the time divided by ¢, = (cM /eB, ). The
normalized velocity u is the velocity divided by u, =x,/%,.
Thus u, is the Alfvén velocity calculated with the intensity
of the magnetic piston and the mass density of the unper-
turbed plasma, while x,, the ion skin depth, is also the ion
Larmor radius calculated with the intensity of the magnetic
piston and the Alfvén velocity u,. Also, p and g are the
pressure and viscosity divided by B3 /4, and € is the inter-
nal energy divided by 2 . We write the transverse compo-
nents of the magnetic field and of the velocity in a complex
form u =u, +iu, b =b,+ib, and define d/dt
=4d /0t + u, (3 /9x). This fairly standard form of the equa-
tions is similar to the form used, for example, by Kennel et
al.” However, since we allow shock formation, the viscosity
in our model is not zero and the entropy is not constant. For
simplicity we choose a polytropic equation of state p = Ap?,
and assume the internal energy to be of the form
€ = p/p(y — 1). We can then replace the energy equation by
the equation

dA —y-1,dp

i (v—"Dp A

For the numerical calculation it is convenient to employ
Lagrangian space, £==(; dx' p(x'), and time, =1, coordi-
nates. Equations (la)-(1¢), (1e), and (2) become

=0. (2)

di
_6_V — & , (3a)
ar ac
du, d ( LA Iz)
=0, 3b
Ex p+a+ 5 (3b)
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Here V'=1/p is the specific volume. In the next section we
solve these equations for the particular problem that a mag-
netic field is switched on at the plasma boundary.

lil. NUMERICAL EXAMPLES

We study the idealized problem of a semi-infinite uni-
form plasma of initial pressure p, = 0 that is located at x>0.
A uniform constant-in-time magnetic field &, is present in
the plasma. At ¢ = 0 a magnetic field b = 1 is switched on at
x<0. We solve Egs. (3) for the evolution of the magnetic
field and of the plasma. We assume that the motion of the
plasma and the propagation of the magnetic field do not
change the intensity of the magnetic field at the plasma—
vacuum boundary at x<0 and therefore b(£ = 0,7>0) = 1.
We also assume that ¥ = 2 and that the (small) artificial
viscosity is of the form®

Yp 2 2 a
h (éu_) i I o

vV o\ a d
g = 5 5 (4)

0, it 94 0,
9

This Lagrangian form of the equations, including the elec-
tron inertia that we omit, was used by Morton® to study the
evolution of perpendicular shocks. Figures 1(a)-1(d) show
the amplitude of the magnetic field [b |, the plasma velocity
u,, and the specific volume Fvs £ for times ¢ = 0.1, 1, 10, 50,
respectively. For comparison, Fig. 2 shows u, and V for the
time 7 = 1 when the parallel magnetic field is absent, b, = 0.
The propagation of the magnetic field is dominant at first
and is not influenced by the plasma motion. At later times
the propagation slows down because of the dispersive nature
of the whistler wave, and the shock front catches up with the
magnetic field [Fig. 1(c)]. At even later times [ Fig. 1(d)],
the shock velocity exceeds the velocity of the magnetic field
propagation. The magnetic field is then confined to the vol-
ume of the compressed plasma in the shock downstream.
The plasma at the shock downstream is not uniform when
the magnetic field propagates and at the plasma—vacuum
boundary there is a regime of rarefaction.! As expected, at
later times, when the shock front by far exceeds the magnetic
field propagation [Fig. 1(d)], the jump relations satisfy the
usual gas-dynamics Hugoniot relations.'® The compression
ratio, for example, is then [ = (y — 1)/(y + 1) 1.

In our previous paper® we have studied the magnetic
field propagation at such early times that the ions do not
move. At these early times ¥ = 1 and u = 0. Equation (3e)
for the magnetic field then becomes the Schrédinger equa-
tion for a free particle®
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FIG. 1. The intensity of the magnetic field |4 |, the longitudinal velocity u,, and the specific volume ¥ versus the Lagrangian coordinate &, for various times:
(a) 7=0.1; (b} 7= 1; (¢) 7= 10; (d) 7= 50. The parameters are b, = 0.1, y = 2, and the pressure and perpendicular magnetic field upstream zero.

ab 3%
—L=ib, -7 (5)
ar dE?

We call MB, b, /(pec) the Hall resistivity, because the mag-
netic field evolution-in-time scales with this nondissipative
“resistivity” as it scales with the collisional resistivity in the
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FIG. 2. The velocity u, and the specific volume Vvs £at 7 = 1. The param-
eters are as in Fig. 1 except that b, = 0.
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usual diffusion with a real diffusion coefficient. The solution
of this equation with the initial-boundary conditions of this
section is

b, =1—(1-D{C[&/2mb,7)'*]
—iS[&/Qmb, )]}, (6)

where C and S are Fresnel integrals.!' Figures 3(a)-3(b)
compare the magnetic field components b,(Re b) and
b,(Im b) as a function of & for the times 7 = 0.1, 1, respec-
tively, as found from the numerical solutions of Eqs. (3)
versus their forms given by Eq. (6). At the earlier time the
correspondence is very good and the predictions of our ap-
proximate model® are fairly accurate. As expected, at the
later times the propagation of the magnetic field is modified
by the plasma motion and the magnetic field profile deviates
from that predicted by (6).

IV. GENERATION OF A WHISTLER PRECURSOR

In the previous sections we described a gas-dynamics
shock that was generated by switching a magnetic field at the
boundary of the plasma. In this section we show a numerical
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FIG. 3. The magnetic field components b and b, vsSat (a) r = 0.1and (b)
7= |. The parameters are as in Fig. 1. The solid lines show the solutions of
the full equations and the dashed lines show the approximate form (6).

solution for the familiar case that the magnetic field in the
plasma is oblique, rather than parallel, and the shock transi-
tion includes compression of the magnetic field within the
plasma. The presence of a finite parallel magnetic field b,
resulis in oscillations in the shock front. This oscillating
shock precursor is generated by the dispersive Hall term
(solving the MHD equations without the Hall term results
in nonoscillatory sharp transition).

Figure 4 shows such generated quasiperpendicular
shock, where the magnetic fieldisb = 0.7¢, + 0.1, , and the
pressure upstream is zero. The pressure balance at the vacu-
um-plasma downstream boundary is

bi./2=p, +b%/2, (7

where subscript 1 denotes downstream values. Inclusion of
the Hall term in the MHD equations does not change the
Hugoniot jump relations. The effect of the dispersive Hall
term is to generate the whistler precursor at the front of this
quasiperpendicular fast (super-Alfvénic) shock.'? In the
numerical example: b, =0.1, V,=1, p, =0, n, =0,
b,, = 0.7. The values at the shock downstream are b, =1,
v, =0.73, p, =0, u,, = 0.24, and the shock velocity is 0.9,
in agreement with the Hugoniot relations'? and (7).

We look for stationary wave solutions for Egs. (3) that
depend on the variable n=¢£ — Ar, where A is a constant.
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FIG. 4. The magnetic field components b, and b, vs £ at 7= 1, when &,
upstream is 0.7, The rest of the parameters are as in Fig. 1.

The stationary equations in the case of zero viscosity and
pressure combine to give

db, (|b )P —b2) b2 4
ib, d; = Mu ° bi—(/l— A)(bl—bo?.
(8}

A similar equation has been extensively studied, for exam-
ple, in relation to intermediate shock waves.'* We can view
the evolution of the magnetic field governed by the above
equation as a motion of a massless particle in the (5,,5,)
plane (7 is the time) under the influence of a uniform mag-

netic field b, and a potential'?
(6, ? - b5)* ( bi) by — bo |
=— - 1 9
v 8 1) 2 ®
where
db, gy (10)
“dy 3,
db
_s, ‘537{:%' (1)

The motion is periodic and results in the whistler oscilla-
tions.

The magnetic field evolves along equipotential curves
and the Hall term is the source of the oscillations around the
fixed point. The dissipation damps the oscillations and re-
sults in a shock transition.
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