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The evolution in the plasma of a magnetic field that is fast-rising at the plasma boundary, and 
the simultaneous pushing of the plasma by that magnetic field, are studied for the case that a 
parallel magnetic field is present in the plasma. It is shown that initially the magnetic field 
propagates into the plasma in the form of a whistler wave. The magnetic field evolution is then 
governed by the Schriidinger equation for a free particle, as described in the previous simplified 
analysis [ Phys. Fluids B 3, 1546 ( 199 1) 1. Later, the gas-dynamics shock propagation exceeds 
the magnetic field propagation. If the magnetic field in the plasma is initially oblique and not 
parallel, a quasiperpendicular fast (super-Alfvenic) shock propagates in the plasma, following 
a whistler precursor. The width of the current channel is on the scale of the ion skin depth. 

1. INTRODUCTION 

Plasma pushing by a magnetic pressure is a dominant 
process in magnetically driven shock waves,’ Z pinches,2 
theta pinches,3 plasma opening switches,4 magnetically in- 
sulated ion diodes,’ and other plasma devices. In a common 
configuration, the magnetic field is parallel to the plasma- 
vacuum boundary outside the plasma, while inside the plas- 
ma its magnitude drops to zero across a narrow current lay- 
er. The width of the current layer could have an important 
effect on the plasma dynamics. In a collisional plasma this 
width is usually determined by the plasma resistivity. The 
presence of a uniform magnetic field normal to the plasma 
boundary and parallel to the direction of magnetic field 
propagation significantly increases the width of the current 
channel. In a collisionless plasma the characteristic width of 
the current channel becomes the ion skin depth rather than 
the electron skin depth. 

At the early stage, the magnetic field propagation into 
the plasma, in the course of formation of the current channel 
and the pushing of the plasma by the magnetic pressure, 
occur simultaneously. We have recently studied such a cur- 
rent channel formation along a parallel magnetic field, when 
a fast-rising magnetic field is applied at the plasma bound- 
ary.6 We were interested in the time before the plasma is 
compressed and a shock is formed. By assuming that the 
process was so fast that the plasma ions were immobile we 
have shown that the magnetic field propagates into the plas- 
ma in the form of a dispersive whistler wave. In the present 
paper we study the current channel formation along a paral- 
lel magnetic field without neglecting the plasma motion. For 
a fast-rising magnetic field we show that initially the magnet- 
ic field does indeed propagate as a whistler wave and its 
evolution is well described by the Schriidinger equation for a 
free particle, in agreement with our earlier simplified analy- 
sis.6 The plasma pushing is shown to become dominant only 
later. The purpose of this paper, therefore, is to describe the 
transition from a dominant magnetic field propagation as a 

whistler wave, which we have previously studied,6 to a domi- 
nant plasma pushing in the form of a shock, as is known in 
shock physics. In short-duration plasmas, when the charac- 
teristic time is shorter than the ion-cyclotron period, this 
transition time cquld be comparable to the duration time of 
the whole process. 

We employ the one-dimensional ( 1-D) ideal magneto- 
hydrodynamics (MHD) model, modified by the inclusion of 
the Hall term in Ohm’s law and artificial viscosity at the 
shock front. The inclusion of the Hall term extends the valid- 
ity of the MHD model to times shorter than the ion-cyclo- 
tron period. Because of its dispersive nature, the Hall term is 
dominant when the fast-rising magnetic field is applied. It is 
the Hall field that enables the magnetic field to propagate in 
the form of a whistler wave. The magnetic field is frozen into 
the electron fluid in our model of zero resistivity. 

As the current channel broadens, the velocity of this 
broadening decreases. The magnetic pressure acts as a piston 
and generates a gas-dynamic shock in the plasma. The prop- 
agation of the shock and the accompanying plasma motion 
gradually become the dominant processes. 

The present analysis describes the transient process of 
magnetic field propagation and plasma pushing along a 
background parallel magnetic field in an idealized one-di- 
mensional semi-infinite plasma. The time scale, the ion-cy- 
clotron period, is characteristic of several pulsed-power 
plasma devices. The understanding of the mechanism ofcur- 
rent channel broadening could be of practical importance. 
However, the effect of the inclusion of a parallel magnetic 
field in any such device could only be appreciated through a 
more-detailed analysis that includes two-dimensional (2-D) 
effects as well as finite dimensions of the particular system, 
sheaths at boundaries, etc. 

In Sec. II we write the governing equations. In Sec. III 
we present numerical examples that demonstrate the early 
field propagation and the developing gas-dynamic shock. In 
Sec. IV we show the fast shock propagating in an initially 
magnetized plasma and the whistler precursor in its front. 

363 Phys. Fluids B 4 (2), February 1992 0899-8221/92/020363-05$04.00 @  1992 American Institute of Physics 363 

Downloaded 04 Feb 2004 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



il. THE GOVERNING EQUATIONS 

We consider a plasma that is initially of a uniform den- 
sitypo and that is propagated by a magnetic field of a charac- 
teristic magnitude B,. The I-D MHD equations, with the 
addition of the Hall term, are the continuity equation 

dp 8% --g+P~=o’ 

the momentum equation 

du -I+;&(p+q+y)=o, dt 
du, bx ah -- 
dt -pdx’ 

the energy equation 

de (p+q) dp 
‘;?;=pzz 

and Faraday’s law 

4 - = 6, au, 
dt 

- - b, ax 

(la) 

(lb) 

(ICI 

(ld) 
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The Hall term is the last term on the right-hand side of Eq. 
( le). We have used normalized quantities, where p is the 
density divided by p,, b is the magnetic field divided by Be, x 
is the coordinate divided by x,, = ( c2M ‘/4rp0 e2) “’ (e and 
Mare the ion charge and mass and c is the velocity of light in 
vacuum), and t is the time divided by to E (CM /eB,, ) . The 
normalized velocity u is the velocity divided by uA =x,/t,. 
Thus uA is the Alfven velocity calculated with the intensity 
of the magnetic piston and the mass density of the unper- 
turbed plasma, while x0, the ion skin depth, is also the ion 
Larmor radius calculated with the intensity of the magnetic 
piston and the Alfven velocity uA. Also, p and 4 are the 
pressure and viscosity divided by B 6/4n; and E is the inter- 
nal energy divided by U: . We write the transverse compo- 
nents of the magnetic field and of the velocity in a complex 
form uI =u, + iu,,, b, =b, + ib,,, and define d /dt 
=d /at + U, (a /ax). This fairly standard form of the equa- 
tions is similar to the form used, for example, by Kennel et 
ai. However, since we allow shock formation, the viscosity 
in our model is not zero and the entropy is not constant. For 
simplicity we choose a polytropic equation of statep = Apy, 
and assume the internal energy to be of the form 
E = p/p( y - 1) . We can then replace the energy equation by 
the equation 

dP $f- (y- 1)p -~-‘q--$=0. 

For the numerical calculation it is convenient to employ 
Lagrangian space, 6=J,‘; dx’ p(x’), and time, 7~ t, coordi- 
nates. Equations (la)-( lc), (le), and (2) become 

3 a 
a7 ( 

IbJ =O +-g l-J+4+y > > 

(3a) 

(3b) 

au, b ah 
-= ?F’ ar (3c) 

-$+ (y- l)VY-rq$o, (3d) 

and 

a(b,V) =b aul a 2b, 
a7 

- + ib, - . 
x 8 452 
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Here VE l/p is the specific volume. In the next section we 
solve these equations for the particular problem that a mag- 
netic field is switched on at the plasma boundary. 

III. NUMERICAL EXAMPLES 

We study the idealized problem of a semi-infinite uni- 
form plasma of initial pressurep,, = 0 that is located at n>O. 
A uniform constant-in-time magnetic field 6, is present in 
the plasma. At t = 0 a magnetic field b = 1 is switched on at 
x(0. We solve Eqs. (3) for the evolution of the magnetic 
field and of the plasma. We assume that the motion of the 
plasma and the propagation of the magnetic field do not 
change the intensity of the magnetic field at the plasma- 
vacuum boundary at xg0 and therefore b(f = O,T> 0) = 1. 
We also assume that y = 2 and that the (small) artificial 
viscosity is of the form* 

(4) 

This Lagrangian form of the equations, including the elec- 
tron inertia that we omit, was used by Morton’ to study the 
evolution of perpendicular shocks. Figures 1 (a)-1 (d) show 
the amplitude of the magnetic lield [b 1, the plasma velocity 
U, , and the specific volume Vvs f for times t = 0.1, I, 10,50, 
respectively. For comparison, Fig. 2 shows uX and V for the 
timer = 1 when the parallel magnetic field is absent, b, = 0. 
The propagation of the magnetic field is dominant at first 
and is not influenced by the plasma motion. At later times 
the propagation slows down because of the dispersive nature 
ofthe whistler wave, and theshock front catches up with the 
magnetic field [ Fig. 1 ( c ) I. At even later times [ Fig. 1 (d ) 1, 
the shock velocity exceeds the velocity of the magnetic field 
propagation. The magnetic field is then contined to the vol- 
ume of the compressed plasma in the shock downstream. 
The plasma at the shock downstream is not uniform when 
the magnetic lield propagates and at the plasma-vacuum 
boundary there is a regime of rarefaction.’ As expected, at 
later times, when the shock front by far exceeds the magnetic 
field propagation [Fig. 1 (d) 1, the jump relations satisfy the 
usual gas-dynamics Hugoniot relations.” The compression 
ratio, forexample, is then+[ = (y- l)/(y+ l)]. 

In our previous paper” we have studied the magnetic 
field propagation at such early times that the ions do not 
move. At these early times I’= 1 and u = 0. Equation (3e) 
for the magnetic field then becomes the Schrodinger equa- 
tion for a free particle6 
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FIG. 1. The  intensity of the magnet ic field 1  b I, the longitudinal velocity u,, and  the specific volume Vversus the Lagrangian coordinate 6, for various times: 
(a) 7  =  0.1; (b) r =  1; (c) r =  10; (d) r =  50. The  parameters are b, = 0.1, y =  2, and  the pressure and  perpendicular magnet ic field upstream zero. 

Jb, ib d2b, 
dr= XT’ (5) 

We call M&b,/(pec) the Hall resistivity, because the mag- 
netic field evolution-in-time scales with this nondissipative 
“resistivity” as it scales with the collisional resistivity in the 
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FIG. 2. The  velocity u, and  the specific volume Vvs {at 7  =  1. The  param- 
eters are as in Fig. 1  except  that b, = 0. 

usual diffusion with a real diffusion coefficient. The solution 
of this equation with the initial-boundary conditions of this 
section is 

6, = 1 - (1 - i,{C [J-/(2n-b,7-)“2] 

- iS [~/(2rb,~)“2]), (6) 
where C and S are Fresnel integrals.” Figures 3 (a)-3 (b) 
compare the magnetic field components b, (Re b) and 
b,, (Im 6) as a function of c for the times r = 0.1, 1, respec- 
tively, as found from the numerical solutions of Eqs. (3) 
versus their forms given by Eq. (6). At the earlier time the 
correspondence is very good and the predictions of our ap- 
proximate model6 are fairly accurate. As expected, at the 
later times the propagation of the magnetic field is modified 
by the plasma motion and the magnetic field profile deviates 
from that predicted by (6). 

IV. GENERATION OF A WHISTLER PRECURSOR 
In the previous sections we described a gas-dynamics 

shock that was generated by switching a magnetic field at the 
boundary of the plasma. In this section we show a numerical 
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FIG. 3. Themagnetic field componmtsb and b, vs<at (a) i- = 0.1 and (b) 
r = I. The parameters are as in Fig. 1. The solid lines show the solutions of 
the full equations and the dashed lines show the approximate form (6). 

solution for the familiar case that the magnetic field in the 
plasma is oblique, rather than parallel, and the shock transi- 
tion includes compression of the magnetic field within the 
plasma. The presence of a finite parahel magnetic field 6, 
results in oscillations in the shock front. This oscillating 
shock precursor is generated by the dispersive Hall term 
(solving the MHD equations without the Hall term results 
in nonoscillatory sharp transition). 

Figure 4 shows such generated quasiperpendicular 
shock, where the magnetic field is b = 0.7gz + 0. lgX, and the 
pressure upstream is zero. The pressure balance at the vacu- 
um-plasma downstream boundary is 

b:J2 =p, + b:/2, (7) 

where subscript 1 denotes downstream values. Inclusion of 
the Hall term in the MHD equations does not change the 
Hugoniot jump relations. The effect of the dispersive Hall 
term is to generate the whistler precursor at the front of this 
quasiperpendicular fast (super-Alfvenic) shock.” In the 
numerical example: b., = 0.1, c, = 1, p,, = 0, Us, = 0, 
b,, = 0.7. The values at the shock downstream are b, ES 1, 
u, =0.73,/J, zo, u,, = 0.24, and the shock velocity is 0.9, 
in agreement with the Hugoniot relations’” and (7). 

We look for stationary wave solutions for Eqs. (3) that 
depend on the variable r/=6 - ;Ir, where /2 is a constant. 
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FIG. 4. The magnetic field components b, and by vs f at r = 1, when b, 
upstream is 0.7. The rest of the parameters are as in Fig. I. 

The stationary equations in the case of zero viscosity and 
pressure combine to give 

dh ib, - = 
(Ib,12--i) 

drl 211 
t8, 

A similar equation has been extensively studied, for exam- 
ple, in relation to intermediate shock waves.13 We can view 
the evolution of the magnetic field governed by the above 
equation as a motion of a massless particle in the (b,,b, f 
plane (9 is the time) under the influence of a uniform mag- 
netic field b, and a potentialI 

where 

dbz b,;i;;=$, 
Y 

(11) 

The motion is periodic and results in the whistler oscilla- 
tions. 

The magnetic field evolves along equipotential curves 
and the Hall term is the source of the oscillations around the 
fixed point. The dissipation damps the oscillations and re- 
sults in a shock transition. 
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